
Le Puzzle de l'Avent 2019

Un événement organisé sur Planète Casio, par Lephenixnoir

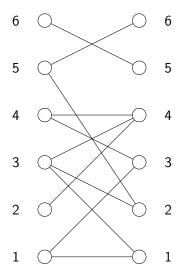
planet-casio.com/Fr/forums/topic16015-1-Le-Puzzle-de-l-Avent-2019.html

Plan de l'image Les 8 pièces centrales seront données au dernier moment.

1er Décembre Introduction du code couleur.

Solution.

- Rouge est un miroir vertical.
- Vert est une inversion d'intensité.
- Bleu est un miroir horizontal.


2 Décembre Introduction des intersections.

Solution. Les transformations se font dans l'ordre Rouge, Vert, Bleu et sur les rectangles maximaux. Pour rouge et bleu, cela revient à regarder individuellement les colonnes et les lignes.

3 Décembre Introduction de multi-transformations.

Abandonné à cause du temps nécessaire pour décoder.

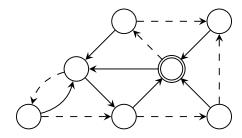
4 Décembre Trouver l'unique couplage parfait du graphe suivant.

Solution. (1,1), (2,4), (3,2), (4,3), (5,6), (6,5).

5 Décembre Déterminer le nombre de diviseurs de 1, 7, 289, 247, 81 et 605.

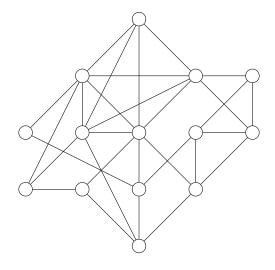
Note. $n=\prod p_i^{lpha_i}$ possède $\sum (lpha_i+1)$ diviseurs.

Solution. $1,7,17^2,13\cdot 19,3^4$ et $5\cdot 11^2$ ont 1,2,3,4,5 et 6 diviseurs respectivement.


6 Décembre Trouver les $m, n \leq 4$ antécédents par la fonction d'Ackermann de

$$x_1 = 11$$
 $x_2 = 125$ $x_3 = 1$ $x_4 = 29$ $x_5 = 13$ $x_6 = 65533$.

Le carré code i décode l'image numéro m-n+3 où $A(m,n)=x_i.$


Solution.
$$A(2,4)=11$$
 $A(3,4)=125$ $A(0,0)=1$ $A(3,2)=29$ $A(3,1)=13$ $A(4,1)=65533$.

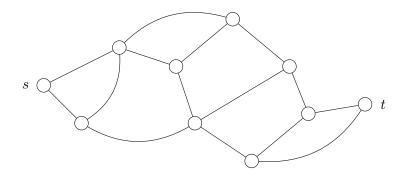
7 Décembre Déterminer la longueur du plus petit chemin synchronisant au nœud marqué dans le graphe suivant.

Solution. Le plus court chemin synchronisant $\longrightarrow --- \longrightarrow --- \longrightarrow$ est de longueur 4.

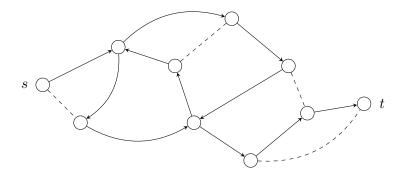
9 Décembre Déterminer que la clique maximale du graphe suivant.

Solution. Le voisinage du nœud le plus haut forme K_5 .

10 Décembre Inférer la suite de Syracuse à partir des termes


Solution. 52.

11 Décembre Déterminer le rôle des fonctions suivantes.


```
def h(x):
    return not not x and g(x - (not not x))
def g(x):
    return not x or h(x - (not not x))
```

Solution. h() teste si un nombre est impair et g() teste si un nombre est pair.

12 Décembre Déterminer la longueur du plus long chemin $s \to t$.

Solution. Un est représenté ci-dessous, de longueur 11.

13 Décembre Calculer la factorisation de 142941853471579.

Solution. 13051277 × 10952327.

14 Décembre Compter le nombre de triangles dans le graphe du 9 Décembre.

Solution. 14 triangles, $\binom{5}{3}=$ 10 sont dans K_5 et 4 en-dehors.

Pour aller plus loin. Compter le nombre de mineurs isomorphes à K_3 .

15 Décembre Compter le nombre de façons d'obtenir 15 par additions de 5, 2 et 1.

Solution. 18 façons.

Pour aller plus loin. Dénombrer le nombre d'écritures de ces sommes, parenthésage compris.

16 Décembre Déterminer une coupe minimale de la grille 5×5 .

Solution. 2, il suffit d'isoler un coin.

Pour aller plus loin. Détermine une coupe minimale du tore $n \times n$ pour tout n.

17 Décembre Compter toutes les sous-listes croissantes de la liste suivante.

Solution. Il y a 20 sous-listes croissantes.

Pour aller plus loin. Caractériser le nombre de sous-listes croissantes de taille 2 dans la liste $[\sigma(i):1\leq i\leq n]$ pour $\sigma\in\mathfrak{S}_n$.

21 Décembre Dénombrer les faces de la rosace au dos de la Graph 35+E II.

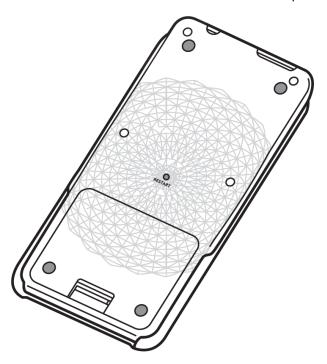


Figure 1: La rosace décrite dans le manuel.

Solution. Tous les arcs ne sont pas visibles sur cette image (le logiciel qui a fait le rendu a dû péter les plombs), mais on voit vite qui il manque.

D'abord, la symétrie. Les cercles 1 à 4 en partant du centres ont 24 rayons, et les cercles 5 à 15 en ont 48. On peut donc compter uniquement les faces présentes dans un rayon, et on trouve 29.

Cercles	Rayons	Nombre de faces par rayon
1	24	1
2-3	24	2
4	24	3
5-14	48	2
15	48	1
Total		1200

La solution du problème est donc 1200.

On peut compter les faces réellement gravées sur la Graph 35+E II; de chaque côté de la calculatrice, on perd 6, 10 et 6 faces sur les cercles 13, 14 et 15, portant le total à 1156 faces.

À bientôt sur Planète Casio!