

PRIMAIRE

COLLÈGE

LYCÉE

ÉTUDES SUPÉRIEURES

Petites fx

FX JUNIOR +

fx-92+ Spéciale Collège

Graph 25+E

Graph 35+E

Graph 35+E II Graph 90+E

LANGAGE PYTHON INTÉGRÉ

fx-CP400+E

MODE EXAMEN INTEGRÉ

Création de QR codes pour visualiser des graphiques / programmes sur l'application mobile CASIO EDU+

Animez votre cours avec les émulateurs CASIO

fx-92+ Spéciale Collège

Graph 35+E II

Graph 90+E

fx-CP400+E

fx-92+ Spéciale Collège Emulator
(Windows)

fx-Manager Plus (Windows) Graph 35+E II

fx-CG Manager PLUS (Windows / Mac)

ClassPad Manager (Windows / Mac)

Une licence gratuite pour l'émulateur de votre choix sur casio-education.fr

NOUVEAU EMULATEUR SUR CLE USB (Windows):

fx-92+ Spéciale Collège, Graph 35+E II et Graph 90+E

→ Offerte pour toute participation à une formation ou offre CASIO

APPLICATIONS CASIO

CASIO CLASSPAD

Site <u>casio-education.fr</u> Chaîne youtube <u>CASIO EDUCATION</u>

RESSOURCES PÉDAGOGIQUES

Retrouvez des manuels et des exercices pour prendre en main vos outils CASIO

OFFRES ENSEIGNANTS

Bénéficiez d'offres exclusives enseignants sur les outils pédagogiques CASIO

FORMATIONS ENSEIGNANTS

Inscrivez-vous à des formations personnalisées réalisées par notre équipe pédagogique

EN SAVOIR +

ACHAT GROUPÉ PAR VOTRE ÉTABLISSEMENT :

CAGNOTTE EN LIGNE POUR VOS ÉLÈVES :

- → Equiper votre établissement de calculatrices pour mise à disposition en classe
- → Centraliser l'achat de vos élèves

Mettez en place un achat groupé, payé par l'établissement scolaire, et réceptionnez les calculatrices pour distribution en classe.

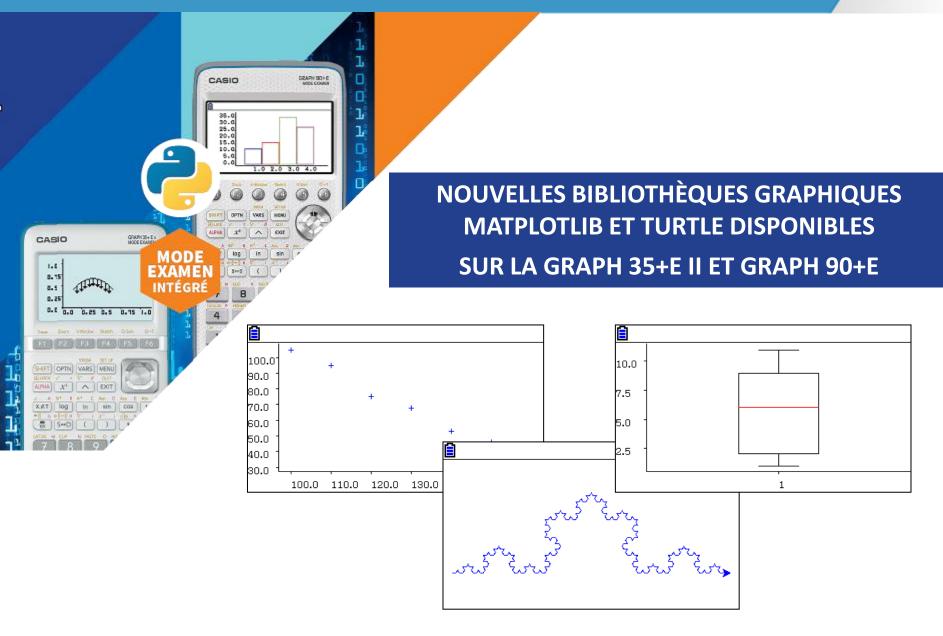
- → Garantie que les familles achèteront le modèle choisi par l'équipe professorale (Mode Examen, Python...)
- → Pas de gestion d'argent pour l'établissement
- → Réception facilitée, par l'établissement.

La cagnotte est établie spécialement pour l'établissement, conformément aux attentes du professeur, permettant ainsi aux familles d'acheter sur Internet la calculatrice choisie et de la récupérer à la rentrée.

Si vous souhaitez mettre en place un achat groupé ou une cagnotte pour votre établissement, contactez-nous à <u>education-france@casio.fr</u>

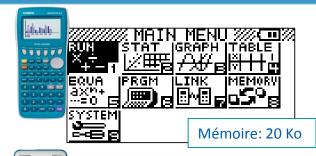
Nous vous mettrons en relation avec nos revendeurs scolaires

Vous utilisez les calculatrices CASIO en classe pour l'apprentissage des sciences ?


Recevez des calculatrices et émulateurs supplémentaires pour votre établissement!

Ouverture de l'offre en mai!

Plus d'informations sur <u>www.casio-education.fr</u>


NOUVELLES BIBLIOTHÈQUES GRAPHIQUES PYTHON

Les calculatrices Graphiques CASIO

PYTHONIGEOM

///// MAIN_MENU /// 🚥 //

PHYSIUMIPROB

Mémoire

Plot Image

 \square_{H}

Simprob

MENU PR

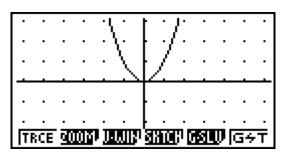
Lien

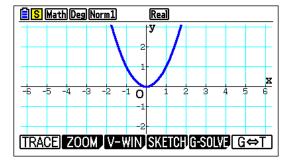
Mémoire: 3 Mo

Ħ

An+B

Système


Graphe 3D


Mémoire: 16 Mo

Trois modèles avec le même fonctionnement:

- Menus à icônes
- CATALOG avec SHIFT 4
- SET UP avec SHIFT MENU
- Onglets aux mêmes endroits

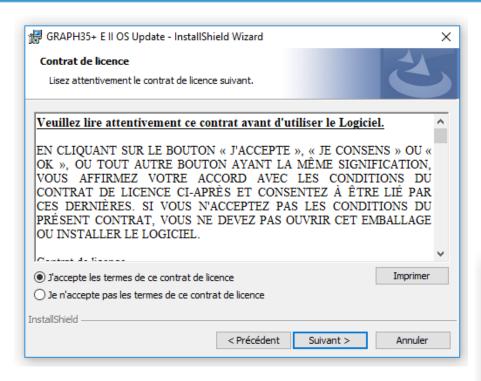
Mise à jour des systèmes d'exploitation des calculatrices G35+E II et G90+E :

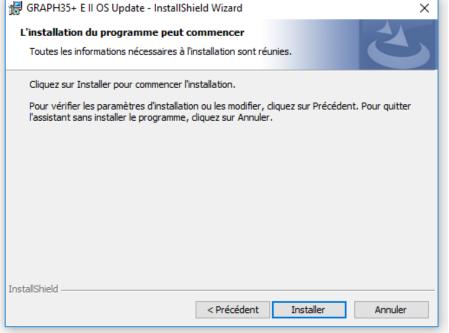
- > Cliquez sur les liens ci-dessous pour télécharger la mise à jour:
 - Mise à jour de la Graph 35+E II sous Windows
 - Mise à jour de la Graph 90+E sous Windows

> Remplissez le formulaire, acceptez les conditions du contrat de licence et validez votre demande.

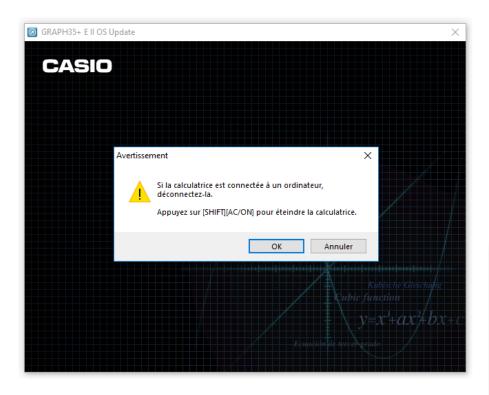
➤ Dès validation du formulaire, le téléchargement du fichier se lance automatiquement

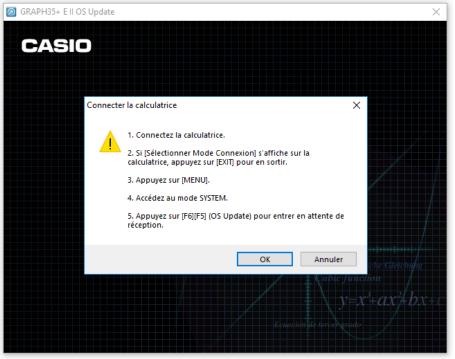
g35+e2_update_330_2b pour la Graph 35+E II fx-cg50_update_340_2b pour la Graph 90+E

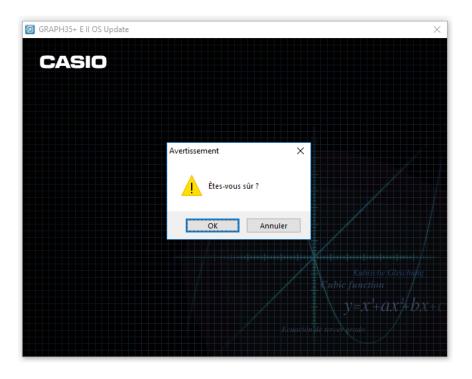

> Dézippez le fichier puis double-cliquez sur le programme téléchargé pour lancer


l'installation:

Le Mode Examen






Le Mode Examen

- > Utilisez le câble USB fourni avec votre calculatrice pour la connecter à votre ordinateur.
- ➤ Un écran apparait sur votre calculatrice. Appuyer alors sur la touche EXIT.
 Se déplacer dans le menu Système, puis appuyer sur F6 et F5 (OS Update).
- ➤ Patientez plusieurs minutes jusqu'à ce que la mise à jour soit installée sur votre calculatrice. Déconnectez ensuite la calculatrice de votre ordinateur afin de finaliser la mise à jour du système d'exploitation.

Ajout des bibliothèques matplotlib et turtle :

- > Téléchargez les deux bibliothèques graphiques sur votre ordinateur :
 - Graph 35+E II : matplotlib et turtle
 - Graph 90+E: matplotlib et turtle
- ➤ Reconnectez votre calculatrice à l'ordinateur. Un écran apparait automatiquement sur votre calculatrice et vous demande de choisir le mode de connexion. Pressez [F1] (Clé USB).
- > Ouvrez ensuite le disque amovible de votre calculatrice et copiez-collez les fichiers des bibliothèques à la racine du dossier.
- > Déconnecter la calculatrice de votre ordinateur.

Mise à jour des systèmes d'exploitation des émulateurs G35+E II et G90+E :

- Cliquez sur les liens ci-dessous pour télécharger la mise à jour:
 - Mise à jour de la Graph 35+E II sous Windows
 - Mise à jour de la Graph 90+E sous Windows
- > Remplissez le formulaire, acceptez les conditions du contrat de licence et validez votre demande.
- > Dès validation du formulaire, le téléchargement du fichier se lance automatiquement.
- ➤ Connectez la clé USB émulateur à votre ordinateur. Dézippez le fichier téléchargé puis double-cliquez sur le fichier exécutable GRAPH35+_E_II_Simulator_Ver_USB ou GRAPH90+_E_Simulator_Ver_USB. L'émulateur sur clé USB se met à jour automatiquement.

Ajout des bibliothèques matplotlib et turtle :

- > Téléchargez les deux bibliothèques graphiques sur votre ordinateur :
 - Graph 35+E II: matplotlib et turtle
 - Graph 90+E: matplotlib et turtle
- ➤ Si ce n'est pas déjà fait, connectez la clé USB émulateur à votre ordinateur. Si vous n'avez jamais utilisé les émulateurs sur votre clé, lancez les émulateurs de la Graph 35+E II et / ou de la Graph 90+E afin de faire apparaître les différents dossiers.
- ➤ Ouvrez le dossier *User_Data*. Sélectionnez la calculatrice pour laquelle vous souhaitez ajouter les bibliothèques graphiques et ouvrez le dossier *FLASH_Folder*. Copiez-collez les fichiers des bibliothèques Matplotlib et Turtle dans le dossier *FLASH_Folder*.
- Eteignez puis relancez l'émulateur sur clé USB afin de faire apparaître les fichiers matplotl.py et turtle.py dans le menu PYTHON.

PYTHON

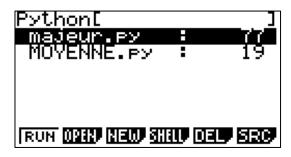
Un peu d'histoire ...

Le nom de ce langage ferait référence aux Monty Python. On pourra remarquer le nom de l'environnement de développement IDLE qui fait aussi penser à Eric Idle, membre des Monty Python.

Programmation fonctionnelle

La syntaxe est assez simple, l'indentation délimite la portée des instructions. Ce langage permet beaucoup de possibilités et notamment de travailler de manière fonctionnelle.

```
def terme(n):
   LIST=[]
   for i in range(n):
      LIST=LIST+[2*i-3]
   return LIST
```

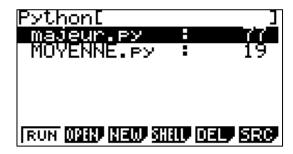

Python sur la Graph 35+E II et la Graph 90+E

Le Menu Python de la Graph 35+E II et de la Graph 90+E est basé sur Micropython (Python 3).

Attention!

Simple d'utilisation, ce nouveau menu permettra de consolider l'apprentissage fait en salle informatique par une utilisation au quotidien en salle de classe.

L'ÉCRAN D'ACCUEIL


```
==majeur 001/005
def maj(a):
if a>=18:
return("MAJEUR")
else:
return("MINEUR")
```

L'ÉDITEUR

```
| CASIO COMPUTER CO.,
|>>>from majeur import
|>>>maj(12)
| MINEUR'
|>>>maj(21)
| MAJEUR'
|>>>
| RUN | A&a@MB
```

LE SHELL (L'interpréteur)

{SHELL}: F4

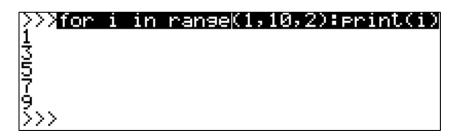
```
>>>12*5
60
>>>41%5
1
>>>41//5
8
>>>print("bonjour")
bonjour
>>>
RUN A⇔a@MM®
```

Le SHELL permet d'exécuter un programme, de tester une instruction ou tout simplement de faire un calcul.

Toutes les commandes et les symboles sont disponibles dans le CATALOG (SHIFT 4).

L'onglet {CHAR} permet d'accéder rapidement à %

Les touches sont traduites en python:




```
>>>for i in range(4):print(i)
0
1
2
3
>>>
```

Il est aussi possible d'exécuter des instructions plus complexes à condition de les écrire sur une seule ligne.

- Si la valeur initiale n'est pas précisée, la boucle for commence à 0.
- Si l'incrémentation n'est pas précisée celle-ci est de 1.
- La valeur de fin n'est pas atteinte.

Nous pouvons tester aussi la ligne suivante avec un Copier/Coller:

Il est possible de Copier / Coller facilement une ligne et de changer un paramètre:

- Remonter sur la ligne en question
- Appuyer sur **EXE**

Rappel: Utilisation de la calculatrice

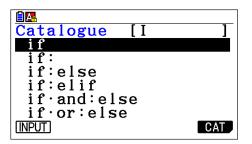
Graph 90+E

1 minuscule: ALPHA

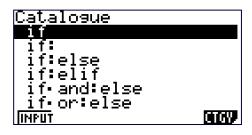
Plusieurs minuscules: SHIFT ALPHA

1 majuscule: ALPHA F5

Plusieurs majuscules: SHIFT ALPHA F5


Graph 35+E II

1 minuscule: ALPHA 🔼 📗


Plusieurs minuscules: SHIFT ALPHA | 4 | 4

1 majuscule: ALPHA F5 🛕 📙

Plusieurs majuscules: SHIFT ALPHA (F5) 🐧 🐧

CATALOG SHIFT 4

Sélection Caractère "#\$%&'()*+,-./0123 456789:;<=>?@ABCDEF GHIJKLMNOPQRSTUVWXY Z[\]^_`abcdefghijkl mnopqrstuvwxyz{|}~

{CHAR}

∰"#\$%&^()*+,-./0123 456789:;<=>?@ABCDEF ĠĤĪĴŔĹMŃÓPQŔŚŤŨŨŴŹŸ Z[\]^_`abcdef9hijkl mnoparstuvwxyz{|}~

ÉNONCE:

Construire un programme en langage Python permettant de déterminer le diamètre d'un cylindre connaissant sa hauteur et son volume.

```
def d(v,h):
  return 2*sqrt(v/(pi*h))

FILE RUN SYMBOL CHAR A⇔a ▷
```

✓ Si on teste la fonction dans le SHELL avec V=150 et h=12, le shell nous indique une erreur: la fonction sqrt n'est pas reconnue.

✓ Il s'arrête sur la première erreur qu'il rencontre. Le même type d'erreur serait aussi obtenu pour la fonction π .

```
from math import *
def d(v,h):
  return 2*sqrt(v/(pi*h))

FILE RUN SYMBOL CHAR A⇔a ▷
```

Il faut importer le module math pour utiliser la racine carrée et le nombre pi.

Matplotlib

✓ Tracer et visualiser les données sous formes de graphiques

- ✓ Compatibilité ordinateurcalculatrice
- ✓ Calculatrice: matplotl
- √ Ordinateur: matplotlib.pyplot

Turtle

- ✓ Déplacer une icône à l'écran afin de dessiner au moyen de segments et d'arcs de cercle de couleurs variées
- ✓ Compatibilité ordinateurcalculatrice
- ✓ Calculatrice: turtle
- ✓ Ordinateur: turtle

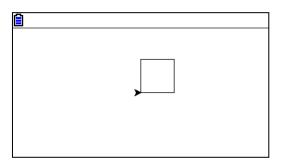
Matplotlib

- √ bar : histogrammes
- √ scatter : nuages de points
- ✓ boxplot : boîtes à moustaches (calculs à l'anglo-saxonne comme sur Matplotlib)
- ✓ boxplotFR : boîtes à moustaches (calculs à la française)
- ✓ arrow : vecteurs
- ✓ plot : courbes
- ✓ axis: modification de la fenêtre graphique
- √ text: ajouter du texte
- ✓ show: visualiser le graphique

Turtle

- ✓ pendown / penup / pencolor / pensize : paramétrage du crayon
- √ forward / backward / right / left
- / goto : déplacements
- ✓ setheading : orientation selon un angle donné
- √ circle: cercles et arcs de cercles
- √ speed: vitesse du tracé

ENONCE:


A l'aide d'un programme Python, tracer un carré.

```
from turtle import *

for i in range(4):
  forward(50) # avancer de 50
  left(90) # tourner a gauche de 90 degres

FILE RUN SYMBOL CHAR A⇔a ▷
```

✓ Les commandes forward et left ne sont pas accessibles dans le catalogue.

ÉNONCE:

A l'aide d'un programme Python, tracer 5 carrés concentriques.

```
carres5.py
            001/016
from turtle import *
speed(0)
                       # vitesse du trace
|k| = 10
for j in range(5):
  down()
                       # abaisser le stylo
                       # choisir la couleur
  pencolor ("green")
  for i in range(4):
    forward (50+j*k)
                       # avancer de 50+j*k
    left(90)
                         tourner a gauche de 90 degres
                       # relever le stylo
  up()
  left(90)
                         tourner a gauche de 90 degres
                       # reculer de k/2
  backward (k/2)
                        tourner a gauche de 90 degres
  left(90)
  forward(k/2)
                         avancer de k/2
  left(180)
                       # tourner a gauche de 180 degres
FILE RUN SYMBOL CHAR A⇔a ▷
```


Une même intensité a été mesurée à l'aide de 20 multimètres identiques.

Intensités mesurées (en mA)	119.1	119.3	119.5	119.6	119.9	120.0	120.1	120.3	120.4
Fréquence d'apparition	1	3	4	3	1	3	1	3	1

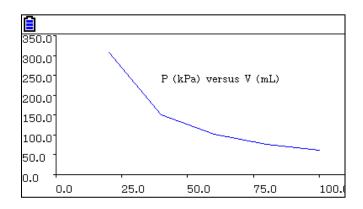
Ecrire, en langage Python, un programme qui permet de tracer un histogramme associé à cette série de mesures.

```
barre.py
                 001/011
   bar(x,y,largeur)
   x: position de chaque barre sur l'axe des x
  y: hauteur de chaque barre
largeur: largeur relative de chaque barre
from matplot1 import *
x=[119.1,119.3,119.5,119.6,119.9,120.0,120.1,120.3,120.4]

y=[1,3,4,3,1,3,1,3,1]

bar (x,y,0.08)
show()
FILE RUN SYMBOL CHAR A⇔a ▷
                                        4.0
                                        3.0
                                        2.0
                                        1.0
                                        0.0
                                            119.0
                                                 119.25 119.5
                                                            119.75 120.0
```


ÉNONCE:


A l'aide d'un programme Python, tracer la courbe représentant la pression (en kPa) en fonction du volume (en mL).

Les pressions et les volumes sont consignés dans le tableau ci-dessous:

Volume (mL)	20	40	60	80	100
Pression (kPa)	307	150	101.7	75.8	61

- √ axis([xmin,xmax,ymin,ymax]): modification de la fenêtre graphique
- ✓ plot(x,y, "couleur en anglais"): ligne brisée continue
- √ text(x,y, "texte"): ajouter du texte
- √ show(): visualier le graphique

ÉNONCE:

Ecrire, en langage Python, un programme permettant de calculer le taux d'avancement final d'une transformation modélisée par la réaction d'un acide sur l'eau.

Pour rappel:

```
taux d'avancement = t = \frac{10^{-pH}}{C}
Avec C en mol.L<sup>-1</sup>
```

```
def taux(ph,C):
    t=(10**-ph)/C
    if t==0:
        return("Inerte")
    elif t<1:
        return("Limitee",t)
    elif t==1:
        return("Totale",t)
    else:
        return("Probleme")

FILE RUN SYMBOL CHAR A⇔a ▷
```

```
MicroPython v1.9.4

|CASIO COMPUTER CO.,

>>>from taux import *

>>>taux(2.9,0.01)

('Limitee', 0.1258925

>>>
```


ENONCE:

Écrire, en langage Python, un programme donnant la liste de résultats de n lancers indépendants d'un dé à 6 faces.

```
from random import *

def des(n):
   liste=[]
   for i in range(n):
      liste=liste+[randint(1,6)]
   return liste

FILE RUN SYMBOL CHAR A⇔a ▷
```

Pour pouvoir utiliser la fonction randint (disponible dans le catalogue), fonction qui génère aléatoirement un nombre entier, nous devons importer le module random.

```
| CASIO COMPUTER CO., | >>> from lancers impor | >>> des(6) | [5, 6, 1, 2, 6, 6] | >>> des(3) | [3, 3, 2] | >>> | RUN | A & CHAR
```

Les symboles [] et = sont disponibles dans l'onglet {CHAR} (F4).

On peut aussi utiliser:

[] SHIFT + SHIFT
= SHIFT •

ÉNONCE:

Écrire un programme en Python qui détermine la fréquence d'apparition en pourcentage d'une lettre donnée dans une chaîne de caractères.

```
def freq(texte, lettre):
   nbcar=0
   for i in range(len(texte)):
      if texte[i]==lettre:
        nbcar=nbcar+1
   return int(100*nbcar/len(texte))

FILE RUN SYMBOD CHAR A⇔a ▷
```

- ✓ len(texte) la longueur de la chaîne texte
- √ texte[i] le caractère en position i dans la chaîne de caractères texte sachant que texte[0] désigne la première lettre

```
|CASIO COMPUTER CO., |
>>>from freq1 import |
>>>freq("hello","1") |
40 |
>>>freq("hello","o") |
20 |
>>> |
RUN | A ⇔a CHAR
```


ÉNONCE:

Compléter le programme afin d'obtenir le temps nécessaire à un élément de demi-vie T pour atteindre la proportion souhaitée. Un paramètre "e" permettra de spécifier le nombre de chiffres significatifs.

Pour rappel:

```
l = lambda = \frac{ln2}{T}
N(t) = N_0 e^{-lambda.t}
```

```
# p = N(t)/N0
# N(t): nombre de noyaux a t
# N0: nombre de noyaux a t = 0

from math import *
def radio(T,p,e):
    t=0
    l=log(2)/T
    while exp(-?*?)>?:
    ?+=e
    return ?

FILE RUN SYMBOL CHAR A⇔a ▷
```

✓ En Python, la fonction ln s'écrit log.


```
# p = N(t)/N0

# N(t): nombre de noyaux a t

# N0: nombre de noyaux a t = 0

from math import *

def radio(T,p,e):
    t=0
    l=log(2)/T
    while exp(-1*t)>p:
        t+=e
    return t

FILE RUN SYMBOL CHAR A⇔a ▷
```

```
* SHELL Initialized *
>>>from radioact impo
>>>radio(122,0.1,1)
406
>>>radio(122,0.2,1)
284
>>>
RUN

A⇔a CHAR
```


education-france@casio.fr

CASIO Education

CASIO calculatrices

MERCI